Warfarin and Flavonoids Do Not Share the Same Binding Region in Binding to the IIA Subdomain of Human Serum Albumin.

نویسندگان

  • Hrvoje Rimac
  • Claire Dufour
  • Željko Debeljak
  • Branka Zorc
  • Mirza Bojić
چکیده

Human serum albumin (HSA) binds a variety of xenobiotics, including flavonoids and warfarin. The binding of another ligand to the IIA binding site on HSA can cause warfarin displacement and potentially the elevation of its free concentration in blood. Studies dealing with flavonoid-induced warfarin displacement from HSA provided controversial results: estimated risk of displacement ranged from none to serious. To resolve these controversies, in vitro study of simultaneous binding of warfarin and eight different flavonoid aglycons and glycosides to HSA was carried out by fluorescence spectroscopy as well as molecular docking. Results show that warfarin and flavonoids do not share the same binding region in binding to HSA. Interactions were only observed at high warfarin concentrations not attainable under recommended dosing regimes. Docking experiments show that flavonoid aglycons and glycosides do not bind at warfarin high affinity sites, but rather to different regions within the IIA HSA subdomain. Thus, the risk of clinically significant warfarin-flavonoid interaction in binding to HSA should be regarded as negligible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

متن کامل

Investigating Dynamic Properties of Residues of Warfarin-Azapropazone Binding Site in Human Serum Albumin

Introduction: Human Serum Albumin (HSA) is one of the most important proteins in blood that can bind a wide range of components and different drugs such as Warfarin and is also circulated in the body by HSA. Therefore, studying HSA is very significant in pharmacology. In this research, dynamic behavior of residues of Warfain binding site of HSA has been investigated. Methods: Firstly, PDB form...

متن کامل

Investigating Dynamic Properties of Residues of Warfarin-Azapropazone Binding Site in Human Serum Albumin

Introduction: Human Serum Albumin (HSA) is one of the most important proteins in blood that can bind a wide range of components and different drugs such as Warfarin and is also circulated in the body by HSA. Therefore, studying HSA is very significant in pharmacology. In this research, dynamic behavior of residues of Warfain binding site of HSA has been investigated. Methods: Firstly, PDB form...

متن کامل

Comparative Binding Affinities of Flavonoid Phytochemicals with Bovine Serum Albumin

Dietary flavonoids show beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is poor, probably due to their interaction with serum albumins. In the current work, the binding interactions of eight related flavonoids, sharing a similar core structure, with bovine serum albumin (BSA) were investigated by fluorescence spectroscopy. The binding affinities of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2017